The Secret Law of Page Harmony

- - Blog News

This method existed long before the computer, the printing press and even a defined measuring unit. No picas or points, no inches or millimeters. It can be used with nothing more than a straight edge, a piece of paper and a pencil.

graaf

via Retinart.

There Are 11 Comments On This Article.

  1. Interesting that it is based on thirds rule. I wonder how much more that we see in the visual world is based on similar rules.

  2. Catherine Todd

    Medieval architecture and illuminated pages were based on these principals, especially since many people did not read, know math or have measuring instruments. Everything is always in harmony. Geometry is such a wonderful “secret” to harmonios design. Where do we find this in nature? I would like to know more… CatherineTodd2 at gmail dot com.

    • @Catherine Todd,

      The golden ratio has been used since at least ancient greece in art. Fibonacci sequences (found throughout nature) have a mathematical connection as well.

      There is probably some subconscious perception of the golden ratio and its many derivatives as being normal since it is present throughout daily life.

  3. Catherine Todd

    Dear Craig, thank you for these wonderful terms! I never knew what it was called: “Fibonacci sequences” and “golden ratio.”

    What is the mathematical connection? I have always wondered about this. Now that I’m seeing piano music that I play written out on the computer, the pattern of the notes matches many of the patterns I have found in weaving and more.

    Please, tell me more and where I might find more info on this fascinating aspect of our mindful world.

    “The world is truly made by artists.”

    CatherineTodd2 at gmail dot com

  4. Catherine Todd

    I found some info on WikiPedia:

    http://en.wikipedia.org/wiki/Fibonacci_number

    0,\;1,\;1,\;2,\;3,\;5,\;8,\;13,\;21,\;34,\;55,\;89,\;144,\; \ldots.

    By definition, the first two Fibonacci numbers are 0 and 1, and each subsequent number is the sum of the previous two. Some sources omit the initial 0, instead beginning the sequence with two 1s.

    In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation

    F_n = F_{n-1} + F_{n-2},\!\,

    with seed values

    F_0 = 0 \quad\text{and}\quad F_1 = 1.

    The Fibonacci sequence is named after Leonardo of Pisa, who was known as Fibonacci (a contraction of filius Bonacci, “son of Bonaccio”). Fibonacci’s 1202 book Liber Abaci introduced the sequence to Western European mathematics, although the sequence had been previously described in Indian mathematics.[2][3]

    Fibonacci numbers are used in the analysis of financial markets, in strategies such as Fibonacci retracement, and are used in computer algorithms such as the Fibonacci search technique and the Fibonacci heap data structure. The simple recursion of Fibonacci numbers has also inspired a family of recursive graphs called Fibonacci cubes for interconnecting parallel and distributed systems. They also appear in biological settings,[4] such as branching in trees, arrangement of leaves on a stem, the fruitlets of a pineapple,[5] the flowering of artichoke, an uncurling fern and the arrangement of a pine cone.[6]

    … (more) http://en.wikipedia.org/wiki/Fibonacci_number

  5. A good way to make a very old-fashioned looking spread.

    Now you have to ask: why do I want my spreads to look like they came from antiquity?